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Abstract
We revisit the relationship between quantum separability and the sign of the
relative q-entropies of composite quantum systems. The q-entropies depend on
the density matrix eigenvalues pi through the quantity ωq = ∑

i p
q

i . Rényi’s
and Tsallis’ measures constitute particular instances of these entropies. We
perform a systematic numerical survey of the space of mixed states of two-
qubit systems in order to determine, as a function of the degree of mixture,
and for different values of the entropic parameter q, the volume in state space
occupied by those states characterized by positive values of the relative entropy.
Similar calculations are performed for qubit–qutrit systems and for composite
systems described by Hilbert spaces of larger dimensionality. We pay particular
attention to the limit case q → ∞. Our numerical results indicate that, as the
dimensionalities of both subsystems increase, typical mixed states of composite
quantum systems tend, as far as their relative q-entropies are concerned, to
behave in a classical way.

PACS numbers: 03.67.−a, 89.70.+c, 03.65.Bz

1. Introduction

Important steps have been made recently towards a systematic exploration of the space of
arbitrary (pure or mixed) states of composite quantum systems [1–4] in order to determine
the typical features exhibited by these states with regard to the phenomenon of quantum
entanglement [1–3, 5–8]. This phenomenon is one of the most fundamental and non-classical
features exhibited by quantum systems [9]. Quantum entanglement lies at the basis of some of
the most important processes studied by quantum information theory [9–17], such as quantum
cryptographic key distribution [18], quantum teleportation [19], superdense coding [20] and
quantum computation [21, 22]. A state of a composite quantum system is called ‘entangled’ if
it cannot be represented as a mixture of factorizable pure states. Otherwise, the state is called
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separable. The above definition is physically meaningful because entangled states (unlike
separable states) cannot be prepared locally by acting on each subsystem individually [23–25].

When one deals with a classical composite system, described by a suitable probability
distribution defined over the concomitant phase space, the entropy of any of its subsystems is
always equal to or smaller than the entropy characterizing the whole system. This is also the
case for separable states of a composite quantum system [26, 27]. In contrast, a subsystem
of a quantum system described by an entangled state may have an entropy greater than the
entropy of the whole system. In fact, the von Neumann entropy of either of the subsystems of
a bipartite quantum system described (as a whole) by a pure state provides a natural measure
of the amount of entanglement of such state. Thus, a pure state (which has vanishing entropy)
is entangled if and only if its subsystems have an entropy larger than that associated with the
system as a whole. The situation is more complex when the composite system is described by
a mixed state. As already mentioned, there are entangled mixed states such that the entropy
of the complete system is smaller than the entropy of one of its subsystems. Alas, entangled
mixed states such that the entropy of the system as a whole is larger than the entropy of either of
its subsystems exist as well. Consequently, the classical inequalities relating the entropy of the
whole system with the entropies of its subsystems provide only necessary, but not sufficient,
conditions for quantum separability. There are several entropic (or information) measures
that can be used in order to implement these entropic criteria for separability. Considerable
attention has been paid, in this regard, to the q-entropies [25, 27–34], which incorporate
both Rényi’s [35] and Tsallis’ [36–39] families of information measures as special instances
(both admitting, in turn, Shanon’s measure as the particular case associated with the limit
q → 1). The early motivation for these studies was the development of practical separability
criteria for density matrices. The discovery by Peres of the partial transpose criteria, which
for two-qubit and qubit–qutrit systems turned out to be both necessary and sufficient, rendered
that original motivation somewhat outmoded. In fact, it is not possible to find a necessary
and sufficient criterion for separability based solely upon the eigenvalue spectra of the three
density matrices ρAB, ρA = TrB[ρAB ] and ρB = TrA[ρAB ] associated with a composite system
A ⊗ B [26]. However, the violation of classical entropic inequalities by entangled quantum
states is of considerable interest in its own right. Quantum entanglement is a fundamental
aspect of quantum physics that deserves to be investigated in full detail from all possible
points of view. The violation of the classical entropic inequalities provides a clear and direct
information-theoretical manifestation of the phenomenon of entanglement.

The aim of the present work is to study the relationship between quantum separability
and the violation of the classical q-entropic inequalities (which corresponds to negative values
of the relative q-entropies). We will perform a systematic numerical survey of the space of
mixed states of two-qubit systems in order to determine, as a function of the degree of mixture,
and for different values of the entropic parameter q, the volume in state space occupied by
those states characterized by positive values of the relative q-entropies. Similar calculations
are performed for qubit–qutrit systems and for composite systems described by Hilbert spaces
of larger dimensionality. We pay particular attention to the limit case q → ∞.

The paper is organized as follows. In section 2 we review some basic properties of the
q-entropies and the relative q-entropies. Our main results are discussed in sections 3. Finally,
some conclusions are drawn in section 4.

2. q-entropies and q-relative entropies

There are several entropic (or information) measures that can be useful in order to investigate
the violation of classical entropic inequalities by quantum entangled states. The von Neumann
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measure

S1 = −Tr(ρ̂ ln ρ̂) (1)

is important because of its relationship with the thermodynamic entropy. On the other hand,
the so-called participation ratio

R(ρ̂) = 1

Tr(ρ̂2)
(2)

is particularly convenient for calculations [1, 5, 40]. It varies from unity for pure states to N
for totally mixed states (if ρ̂ is represented by an N × N matrix). It may be interpreted as the
effective number of pure states that enter the mixture. If the participation ratio of ρ̂ is high
enough, then its partially transposed density matrix is positive, which for N = 4 amounts to
separability. The q-entropies, which are functions of the quantity

ωq = Tr(ρ̂q) (3)

provide one with a whole family of entropic measures. In the limit q → 1 these measures
incorporate (1) as a particular instance. On the other hand, when q = 2 they are simply related
to the participation ratio (2). Most of the applications of q-entropies to physics involve either
the Rényi entropies [35],

S(R)
q = 1

1 − q
ln (ωq) (4)

or the Tsallis entropies [36–38]

S(T )
q = 1

q − 1
(1 − ωq). (5)

We reiterate that the von Neumann measure (1) constitutes a particular instance of both
Rényi’s and Tsallis’ entropies, which is obtained in the limit q → 1. The most distinctive
single property of Tsallis’ entropy is its nonextensivity. Tsallis’ entropy of a composite system
A ⊗ B whose state is described by a factorizable density matrix, ρAB = ρA ⊗ ρB , is given by
Tsallis’ q-additivity law

S(T )
q (ρAB) = S(T )

q (ρA) + S(T )
q (ρB) + (1 − q)S(T )

q (ρA)S(T )
q (ρB). (6)

In contrast, Rényi’s entropy is extensive. That is, if ρAB = ρA ⊗ ρB ,

S(R)
q (ρAB) = S(R)

q (ρA) + S(R)
q (ρB). (7)

Tsallis’ and Rényi’s measures are related through

S(T )
q = F

(
S(R)

q

)
(8)

where the function F is given by

F(x) = 1

1 − q
{e(1−q)x − 1}. (9)

An immediate consequence of equations (8) and (9) is that, for all non-vanishing values of q,
Tsallis’ measure S(T )

q is a monotonic increasing function of Rényi’s measure S(R)
q .

Considerable attention has been recently paid to a relative entropic measure based upon
Tsallis’ functional, and defined as

S(T )
q (A|B) = S(T )

q (ρAB) − S(T )
q (ρB)

1 + (1 − q)S
(T )
q (ρB)

. (10)

Here ρAB designs an arbitrary quantum state of the composite system A ⊗ B, not necessarily
factorizable nor separable, and ρB = TrA(ρAB). The relative q-entropy S(T )

q (B|A) is defined
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in a similar way as (10), replacing ρB by ρA = TrB(ρAB). The relative q-entropy (10) has been
recently studied in connection with the separability of density matrices describing composite
quantum systems [32, 33]. For separable states, we have [27]

S(T )
q (A|B) � 0 S(T )

q (B|A) � 0. (11)

In contrast, there are entangled states that have negative relative q-entropies. That is, for some
entangled states one (or both) of the inequalities (11) are not verified.

Note that the denominator in (10),

1 + (1 − q)S(T )
q = wq > 0 (12)

is always positive. Consequently, as far as the sign of the relative entropy is concerned, the
denominator in (10) can be ignored. Besides, since Tsallis’ entropy is a monotonic increasing
function of Rényi’s (see equations (8) and (9)), it is plain that (10) has always the same sign as

S(R)
q (A|B) = S(R)

q (ρAB) − S(R)
q (ρB). (13)

From now on we refer to the positivity of either Tsallis’ relative entropy (10) or Rényi’s relative
entropy (13) as the ‘classical q-entropic inequalities’. In general, when we speak about the
sign of the q-relative entropy, we refer indistinctly either to the sign of (10) or to the sign of
(13) (which always coincides).

3. Probabilities of finding states with positive relative q-entropies

In order to perform a systematic numerical survey of the properties of arbitrary (pure and
mixed) states of a given quantum system, it is necessary to introduce an appropriate measure
µ on the concomitant space S of general quantum states. Such a measure is needed to compute
volumes within the space S, as well as to determine what is to be understood by a uniform
distribution of states on S. A natural measure on S, which we are going to adopt in the present
work, was recently introduced by Zyczkowski et al [1, 2]. An arbitrary (pure or mixed) state
ρ of a quantum system described by an N-dimensional Hilbert space can always be expressed
as the product of three matrices,

ρ = UD[{λi}]U †. (14)

Here U is an N × N unitary matrix and D[{λi}] is an N × N diagonal matrix whose diagonal
elements are {λ1, . . . , λN }, with 0 � λi � 1, and

∑
i λi = 1. The group of unitary matrices

U(N) is endowed with a unique, uniform measure: the Haar measure ν [41]. On the other
hand, the N-simplex �, consisting of all the real N-uples {λ1, . . . , λN } appearing in (14), is a
subset of an (N − 1)-dimensional hyperplane of RN . Consequently, the standard normalized
Lebesgue measure LN−1 on RN−1 provides a natural measure for �. The aforementioned
measures on U(N) and � lead then to a natural measure µ on the set S of all the states of our
quantum system [1, 2, 41], namely

µ = ν × LN−1. (15)

All our present considerations are based on the assumption that the uniform distribution of
states of a quantum system is the one determined by the measure (15). Thus, in our numerical
computations we randomly generate states according to the measure (15).

The simplest quantum mechanical systems exhibiting the phenomenon of entanglement
are the two-qubit systems (N = 4). They play a fundamental role in quantum information
theory. The concomitant space of mixed states is 15-dimensional and its properties are not
trivial. There still are features of this state space, related to the phenomenon of entanglement,
which have not, thus far, been completely characterized in full detail.
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Figure 1. Probability of finding (for different values of q) a two-qubit state which, for a given
degree of mixture R = 1/Tr(ρ2), has positive relative q-entropies. The solid line corresponds to
the probability of finding, for a given degree of mixture R = 1/Tr(ρ2), a two-qubit state with a
positive partial transpose.

We determined numerically, by recourse to a Monte Carlo calculation and for different
values of the entropic parameter q, the probability of finding a two-qubit state which, for a given
degree of mixture R = 1/Tr(ρ2), has positive relative q-entropies (i.e. S(R)

q (ρAB) � S(R)
q (ρA)

and S(R)
q (ρAB) � S(R)

q (ρB)). The results are depicted in figure 1. The curve associated with
the limit case q → ∞ deserves special comment. In this limit we have

lim
q→∞(Tr ρq)1/q = lim

q→∞

(∑
i

p
q

i

)1/q

= λm (16)

where

λm = max
i

{pi} (17)

is the maximum eigenvalue of the statistical operator ρ. Hence, in the limit q → ∞, the
q-entropies depend only on the largest eigenvalue of the density matrix. In particular, the
Rényi entropy reduces to

S(R)
∞ = − ln (λm). (18)

This means that the curve in figure 1 associated with q = ∞ indicates the probabilities
of finding states such that the largest eigenvalue of the statistical operator describing the
composite system is smaller than the largest eigenvalues of either of its subsystems. The
solid line in figure 1 corresponds to the probability of finding, for a given degree of mixture
R = 1/Tr(ρ2), a two-qubit state with a positive partial transpose. Since Peres’ criterion for
separability is necessary and sufficient, this last probability coincides with the probability of
finding a separable state. We see that, as the value of q increases, the curves associated with
the relative entropies approach the curve corresponding to the Peres criterion. However, even
in the limit q → ∞ the entropic curve lies above the Peres criterion by a considerable amount.
This means that, even for q → ∞, there is a considerable volume in state space occupied
by entangled states complying with the classical entropic inequalities (that is, having positive
relative entropies).
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Figure 2. Probability of finding (for different values of q) a two-qubit state which, for a given
degree of mixture R = 1/Tr(ρ2), either (i) has both relative q-entropies positive, as well as
a positive partial transpose, or (ii) has a negative relative q-entropy and a non-positive partial
transpose.

The probability of finding separable states increases with the degree of mixture [1], as
is evident from the solid curve in figure 1. Also, one can appreciate the fact that a similar
trend is exhibited by the probability of finding, for a given q-value, states with positive relative
q-entropies.

We have computed numerically the probability (for different values of q) that a two-qubit
state with a given degree of mixture be correctly classified, either as entangled or as separable,
on the basis of the sign of the relative q-entropies. The results are plotted in figure 2. That is,
figure 2 depicts the probability of finding (for different values of q) a two-qubit state which,
for a given degree of mixture R = 1/Tr(ρ2), either has (i) both relative q-entropies positive, as
well as a positive partial transpose, or (ii) has a negative relative q-entropy and a non-positive
partial transpose. We see that, for all values of q > 0, this probability is equal to 1 both for
pure states (R = 1) and for states with (R > 3). The probability attains its lowest value Pm(q)

at a special value Rm(q) of the participation ratio. Both quantities Rm(q) and Pm(q) exhibit a
monotonic increasing behaviour with q, adopting their maximum values in the limit q → ∞.

In figures 1 and 2 we have used the participation ratio R as a measure of mixedness.
The quantity R is, essentially, a q-entropy with q = 2. The q-entropies associated with other
values of q are legitimate measures of mixedness as well, and have already found applications
in relation with the study of entanglement [1, 8]. It is interesting to see what happens, in
the present context, when we consider measures of mixedness based on other values of q.
Of particular interest is the limit case q → ∞ which, as already mentioned, is related to
the largest eigenvalue of the density matrix. The largest eigenvalue constitutes a legitimate
measure of mixture in its own right: states with larger values of λm can be regarded as less
mixed. Its extreme values correspond to (i) pure states (with λm = 1) and (ii) the density
matrix 1

4 Î (with λm = 1/4). In figures 3 and 4 we have considered (in the horizontal axes) the
largest eigenvalue λm as a measure of mixedness. We computed the probability of finding (for
different values of q) a two-qubit state which, for a given value of the maximum eigenvalue λm,
has positive relative q-entropies. The results are depicted in figure 3. The solid line corresponds
to the probability of finding, for a given value of λm, a two-qubit state with a positive partial
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Figure 3. Probability of finding (for different values of q) a two-qubit state which, for a given value
of the maximum eigenvalue λm, has positive relative q-entropies. The solid line corresponds to the
probability of finding, for a given value of λm, a two-qubit state with a positive partial transpose.
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Figure 4. Probability of finding (for different values of q) a two-qubit state which, for a given
value of the maximum eigenvalue λm, either (i) has its two relative q-entropies positive, as well
as a positive partial transpose, or (ii) has a negative relative q-entropy and a non-positive partial
transpose.

transpose. We see in figure 3 that, for λm < 1/3, the probability of finding states verifying the
classical entropic inequalities (i.e. having positive relative entropies) is, for all q > 0, equal
to 1. This is so because all states whose largest eigenvalue λm � 1/3 are separable [8].

Figure 4 depicts the probability of finding (for different values of q) a two-qubit state
which, for a given value of the maximum eigenvalue λm, either has both (i) relative q-entropies
positive and a positive partial transpose, or (ii) a negative relative q-entropy and a non-positive
partial transpose.
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Figure 5. Probability (as a function of q) of finding a two-qubit state which either has both positive
relative q-entropies and a positive partial transpose, or has a negative relative q-entropy and a
non-positive partial transpose.

A remarkable aspect of the behaviour of the sign of the relative q-entropies, which
transpires from figures 1 and 3, is that, for any degree of mixture, the volume corresponding
to states with positive relative q-entropies (q > 0) is a monotonic decreasing function of q.
This feature of figures 1 and 3 is interesting because, for a single given state ρ, the relative
q-entropy is not necessarily decreasing in q [27]. This means that the positivity of the relative
entropy of a given state ρ and for a given value q∗ of the entropic parameter does not imply the
positivity of the relative q-entropies of that state for all q < q∗. That is, q < q∗ does not imply
that the family of states exhibiting positive relative q∗-entropies is a subset of the family of
states with positive q-entropies. This fact notwithstanding, the numerical results reported here
indicate that for 0 < q < q∗ the volume of states with positive q∗-relative entropies is smaller
than the volume of states with positive q-entropies. This implies that, among all the q-entropic
separability criteria, the one corresponding to the limit case q → ∞ is the strongest, as was
recently suggested by Abe [34] on the basis of his analysis of a monoparametric family of
mixed states for multi-qudit systems.

It is interesting to see the behaviour, as a function of the entropic parameter q, of the
global probability (regardless of the degree of mixture) that an arbitrary state of a two-qubit
system exhibits simultaneously (i) a positive relative q-entropy and a positive partial transpose,
or (ii) a negative relative q-entropy and a non-positive partial transpose. In other words, this
is the probability that for an arbitrary state the entropic separability criterion and the Peres
criterion lead to the same ‘conclusion’ with respect to the separability (or not) of the state
under consideration. In figure 5 we depict this probability as a function of 1/q , for values of
q ∈ [2, 20]. We see that this probability is an increasing function of q. In the limit q → ∞
this probability approaches the value ≈0.7428. On the other hand, for q = 1 (that is, when we
use the standard logarithmic entropy) the probability is approximately equal to 0.6428.

We have performed for qubit–qutrit systems calculations similar to those which we have
already discussed for two-qubit systems. The results are summarized in figures 6 and 7.
Figure 6 depicts the probability of finding (for different values of q) a qubit–qutrit state
which, for a given degree of mixture R = 1/Tr(ρ2), has positive relative q-entropies.
The solid line in figure 6 corresponds to the probability of finding, for a given degree of
mixture R = 1/Tr(ρ2), a qubit–qutrit state with a positive partial transpose. Figure 7 depicts
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Figure 6. Probability of finding (for different values of q) a qubit–qutrit state which, for a given
degree of mixture R = 1/Tr(ρ2), has positive relative q-entropies. The solid line corresponds to
the probability of finding, for a given degree of mixture R = 1/Tr(ρ2), a qubit–qutrit state with a
positive partial transpose.
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Figure 7. Probability of finding a qubit–qutrit state which, for a given degree of mixture
R = 1/Tr(ρ2), and for different values of q, either (i) has its two relative q-entropies positive,
as well as a positive partial transpose, or (ii) has a negative relative q-entropy and a non-positive
partial transpose.

the probability of finding, for different values of q, a qubit–qutrit state which has, for a given
degree of mixture R = 1/Tr(ρ2), either (i) its two relative q-entropies positive, as well as
a positive partial transpose, or (ii) a negative relative q-entropy and a non-positive partial
transpose. We have also computed the probability (for different values of q) that an arbitrary
qubit–qutrit state (regardless of its degree of mixture) be correctly classified,either as entangled
or as separable, on the basis of the sign of the relative q-entropies. These probabilities are
depicted in figure 8, for values of q in the interval q ∈ [2, 20]. As happens with two-qubit
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Figure 8. Probability (as a function of q) of finding a qubit–qutrit state which either has both
positive relative q-entropies and a positive partial transpose, or has a negative relative q-entropy
and a non-positive partial transpose.

systems, this probability is an increasing function of q. For q = 1 the probability is
approximately equal to 0.3891 and approaches the (approximate) value 0.4974 as q → ∞.
For a given value of q, the probability of coincidence between the Peres’ and the entropic
separability criteria are seen to be smaller in the case of qubit–qutrit systems than in the case
of two-qubit systems.

It is worthwhile to investigate the manner in which the (negative) relative q-entropy
S(R)

q (ρA) − S(R)
q (ρAB) = −S(R)

q (B|A) is related to the entanglement of formation [42], for
general two-qubit states violating the concomitant classical entropic inequality. We have
studied the aforementioned relationship numerically. The entanglement of formation of a
two-qubit state ρ̂ can be evaluated analytically by recourse to Wootters’ formula [43],

E[ρ̂] = h

(
1 +

√
1 − C2

2

)
(19)

where

h(x) = −x log2 x − (1 − x) log2(1 − x) (20)

and the concurrence C is given by

C = max(0, λ1 − λ2 − λ3 − λ4) (21)

λi (i = 1, . . . , 4) being the square roots, in decreasing order, of the eigenvalues of the matrix
ρ̂ρ̃, with

ρ̃ = (σy ⊗ σy)ρ
∗(σy ⊗ σy). (22)

The above expression has to be evaluated by recourse to the matrix elements of ρ̂ computed
with respect to the product basis. In figure 9, the concurrence squared C2 is plotted versus
S(R)

q (ρA)−S(R)
q (ρAB) = −S(R)

q (B|A)(q = ∞), for a set of random two-qubit states generated
numerically, keeping only those with a negative relative entropy. It can be appreciated in
figure 9 that, for those states not complying with the classical inequality S(R)

q (B|A) � 0,
the concurrence squared C2 (and consequently, the entanglement of formation) is, to a
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entropy.

certain extent, correlated with the relative q-entropy S(R)
q (B|A). States with increasing

(positive) values of S(R)
q (ρA) − S(R)

q (ρAB) tend to be endowed with larger values of the
concurrence squared C2. Alas, this correlation does not seem to be strong, and deteriorates as
S(R)

q (ρA) − S(R)
q (ρAB) increases.

Finally, we have computed the probabilities of finding states with positive relative
q-entropies (for the case q = ∞) for bipartite quantum systems described by Hilbert spaces
of increasing dimensionality. Let N1 and N2 stand for the dimensions of the Hilbert spaces
associated with each subsystem and N = N1 × N2 be the dimension of the Hilbert space
associated with the concomitant composite system. We have considered three sets of systems:
(i) systems with N1 = 2, 3 and increasing values of N2 and (ii) systems with N1 = N2 and
increasing dimensionality. The computed probabilities are depicted in figure 10, as a function
of the total dimension N. The three upper curves correspond (as indicated in the figure) to
composite systems with N1 = 2, N1 = 3 and N1 = N2. For the sake of comparison, the
probability of finding states complying with the Peres partial transpose separability criterion
(lower curve) is also plotted. In order to obtain each point in figure 10, 108 states were
randomly generated.

Some interesting conclusions can be drawn from figure 10. In the case of composite
systems with N1 = N2, the probability of finding states complying with the classical (q = ∞)

entropic inequalities (that is, having positive both relative q-entropies) is an increasing function
of the dimensionality. Furthermore, this probability seems to approach 1, as N → ∞. In
other words, figure 10 provides numerical evidence that, in the limit of infinite dimension,
typical two-qudit systems (dimension D × D) behave classically, as far as the signs of the
relative q-entropies are concerned. This does not mean, of course, that there are no two-qudit
states with large D violating the classical inequalities. For any value of D, such states always
exist (for instance, entangled pure states). Our numerical findings suggest, however, that
for large D, typical mixed states of two-qudit systems do comply with the classical entropic
inequalities.

When considering composite systems with increasing dimensionality, but keeping the
dimension of one of the subsystems constant (N1 = 2, 3), we obtained numerical evidence
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Figure 10. Global probability of finding a state (pure or mixed) of a bipartite quantum system with
positive relative q-entropies. N1 and N2 stand for the dimensions of the Hilbert spaces associated
with each subsystem, and N = N1 × N2 is the dimension of the Hilbert space associated with
the composite system as a whole. The three upper curves correspond (as indicated in the figure)
to composite systems of increasing dimensionality, and with N1 = 2, N1 = 3 and N1 = N2.
The probability of finding a state complying with the Peres partial transpose separability criterion
(lower curve) is also plotted.

that the probability of having positive relative q-entropies (again, with q = ∞) behaves in a
monotonic decreasing way with the total dimension N = N1 × N2. As can be appreciated in
figure 10, for N1 = 2, and within the range of N-values covered by our numerical computations,
the alluded to probability is a linear decreasing function of N. A similar decreasing linear
behaviour is exhibited by our results corresponding to N1 = 3 (for large enough N). In this
last case, the probability of having positive relative q-entropies (with q = ∞) decreases with
a slope smaller than the slope associated with N1 = 2. Summing up, our numerical results
suggest that the non-classical features of composite systems with N1 = const, related to the
sign of the relative q-entropies, tend to increase with the total dimensionality N = N1 × N2.

It is interesting to note that the probabilities of finding states with positive q-entropies are
not just a function of the total dimension N = N1 ×N2 (as happens, with good approximation,
for the probability of having a positive partial transpose). In contrast, they depend on the
individual dimensions (N1 and N2) of both subsystems. Furthermore, the trends of the alluded
to probabilities are clearly different if one considers composite systems of increasing dimension
with either (i) increasing dimensions for both subsystems or (ii) increasing dimension for one
of the subsystems and constant dimension for the other.

4. Conclusions

We have performed a systematic numerical survey of the space of mixed states of two-qubit
systems in order to determine, as a function of the degree of mixture, and for different values
of the entropic parameter q, the volume in state space occupied by those states characterized
by positive values of the relative q-entropy. We also computed, for different values of q, the
global probability of correctly classifying an arbitrary state of a two-qubit system (either as
separable or as entangled) on the basis of the signs of its relative q-entropies. This probability
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exhibits a monotonic increasing behaviour with the entropic parameter q. The approximate
values of these probabilities are 0.6428 for q = 1 and 0.7428 in the limit q → ∞.

An interesting conclusion that can be drawn from the numerical results reported here is
that, notwithstanding the known non-monotonicity in q of the relative q-entropies [27], the
volume corresponding to states with positive relative q-entropies (q > 0) is, for any degree of
mixture, a monotonic decreasing function of q.

Similar calculations were performed for qubit–qutrit systems and for composite systems
described by Hilbert spaces of larger dimensionality. We pay particular attention to the limit
case q → ∞. Our numerical results indicate that, for composite systems consisting of two
subsystems characterized by Hilbert spaces of equal dimension N1, the probability of finding
states with positive q-entropies tends to 1 as N1 increases. In other words, as N1 → ∞ most
states seem to behave (as far as their relative q-entropies are concerned) classically. On the
other hand, the alluded to probability exhibits a decreasing behaviour (as a function of the total
dimensionality N = N1 × N2) when the dimension N1 associated with one of the subsystems
is kept fixed.
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